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Abstract
Model-Based Testing (MBT) constitutes a number of technologies, methods, and approaches, with the

aim of improving the quality, efficiency, and effectiveness of test processes, tasks, and artifacts. Started as

a pure academic field of application, it has gained significance for industrial domains in recent years.

Moreover, the ongoing adoption of Model-Based Engineering techniques by industrial-grade software

engineering companies provides a solid basis to introduce and apply MBT approaches and hopefully will

lead to a larger acceptance of model-based techniques. This entry presents background information on

testing in general, motivates the application of MBT approaches in particular, and reviews related work

and standards.

INTRODUCTION

Software-intensive systems are playing an ever-

increasing role in business and industrial products such

as cars, trains, manufacturing machines, industrial auto-

mation systems, mobile phones, and financial computer-

supported systems. The complexity of such systems is

increasing both in terms of code and algorithms as well

as their interconnectivity. Furthermore, the qualitative

importance of the software embedded in these products

is growing because it is taking over more and more essen-

tial controlling (sometimes safety-relevant) functions as

in driving assistance and engine management in vehicles,

or controlling functions in a milling machine. Since soft-

ware is taking over more important functions, failures

occurring in this software could potentially lead to disas-

trous effects, at worst possibly endangering human life or

the environment, for example, if an autopilot is not work-

ing as expected. Even in less extreme cases, failures can

lead to a financial disaster.

With this in mind, an effective quality assurance

mechanism supporting the software development is indis-

pensable. One of the most important means of quality

assurance is testing, since it is the only proof under real

circumstances. Unfortunately, the costs for testing are still

taking a huge percentage of the overall development costs,

i.e., 30–40%.

In industrial domains such as automotive, automa-

tion, telecommunication, and financials, model-based

development is already partly in use. For example,

Simulink/Stateflow,[1] UML,[2,3] Labview,[4] and BPML[5]

models are already in use in some of the industrial

domains named above. In the business domain, mainly

large-scale business process models are used to

describe the business and IT services. In the

automotive domain, UML and Simulink/Stateflow

models are used. The telecommunication and railway

domain often refer to UML models and in the industrial

automation domain, UML, Simulink/Stateflow, and

Labview models are used. Moreover, other proprietary

(partly self-developed) modeling languages can be

found in several industrial domains. Thus, model-

based development is, in industry as well as in acade-

mia, clearly seen as a means of making the development

of software-based systems more effective, reliable, and

maintainable.

The situation with Model-Based Testing (MBT) is

somewhat different. Although concepts and tool

prototypes have been available in the academic world for

many years, industrial-grade tools are less often found and

are rarely used in industrial-grade processes. Nevertheless,

MBT can be seen as an efficient way to reduce the efforts

and costs for testing. The increasing acceptance for model-

based development processes resulting in a stronger for-

malization of development artifacts yields a promising

basis to introduce MBT approaches on a larger scale.

Last but not least, success stories at Motorola[6,7] and the

availability of mature tools[8] have shown that MBT

approaches are now applicable to industry-grade test

processes.

BACKGROUND

Modeling and testing are research and industrial activities

that are both self-standing domains with their own
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terminologies, but they are also closely related or even

dependent on one another. Many experienced experts are

concentrating their work on one field only. Due to the

purpose and focus of this study on testing, this entry pro-

vides background information on testing and quality in

general and on the test process in particular.

General Considerations on Testing

Software testing is used in association with verification

and validation (V&V). Verification is the checking or

testing of items, including software, for conformance

and consistency with an associated specification.

Software testing is one kind of verification, which

also uses techniques such as reviews, inspections, and

walkthroughs. Validation is the process of checking

that what has been specified is what the user actually

wanted.

Testing

Software testing is one of the most important analytical

quality assurance methods. Essential to a good test quality

is the systematic design of test cases. The test cases defined

decide about the kind and scope of the test. In most cases,

test models and test case designs are difficult to automate,

but MBT is one of the most promising approaches for

addressing this problem. In MBT, test cases can be auto-

matically derived from a system model to be tested. This

approach is supported by a number of methodologies and

tools dealing with the creation and generation of system

models, simulation of those models, creation and/or gen-

eration and execution of test suites, etc. Because imple-

mentation changes might as well be captured in the model,

MBT reduces test maintenance costs, and developers only

have to regenerate the test in order to have the changes

affect all tests. The MBT tools enhance team communica-

tion because the model, test suite, and trace provide a clear

and unified view of both the System Under Test (SUT) and

the test.

Model-based testing

A model is usually an abstract, partial representation of the

system under the test’s desired behavior. The test cases

derived from this model are functional tests on the same

level of abstraction as the model. These test cases are

collectively known as the abstract test suite. For a SUT,

various system models might exist, such as

� requirements models,

� information models,

� workflow models,

� architectural models,

� behavioral models,

� configuration models,

� deployment models,

� performance models,

� risk models,

� environment models, and

� usage models.

Model-based test methods (see Refs. [9, 10]) differ in

the system model being considered, the methods taken

for test generation, and finally, the way the test results

are being obtained. The system models are classified

into aspects of the subject being considered, the redun-

dancy being contained in, the behavioral characteristics

being reflected, and finally the behavioral paradigms

being used.

There are many different ways to “derive” tests from a

model. Because testing is usually experimental and based

on heuristics, there is no one best way to do this. It is

common to consolidate all test derivation-related design

decisions into a package that is often known as “test

requirements,” “test purpose,” or even “use case.” This

package can contain, e.g., information about the part of

the model that should be the focus for testing, or about the

conditions where it is correct to stop testing. Because test

suites are derived from models and not from source code,

MBT is usually seen as one form of black-box testing. In

some aspects, this is not completely accurate. MBT can be

combined with source-code-level test coverage measure-

ment, and functional models can be based on existing

source code in the first place.

Especially in Model-Driven Engineering or in OMG’s

(Object Management Group) MDA (Model-Driven

Architecture), the model is built before or parallel to the

development process of the SUT. Recent work outlines

how to combine system development and testing along

this MDA paradigm.

The effectiveness of MBT is primarily due to the poten-

tial for automation to increase effectiveness and efficiency.

This is typically guided by test selection criteria that also

serve as termination criteria for testing. If the system model

is machine-readable and formal to the extent that it has a

well-defined behavioral interpretation, test cases can in

principle be derived mechanically. Often, the system

model is translated to or interpreted as a finite-state auto-

maton or a state transition system. To find test cases, the

automaton is searched for executable paths. A possible

execution path can be the basis for a test case—extended,

e.g., by timers, verdicts, and defaults to cover unexpected

responses. Depending on the complexity of the SUT and

the corresponding model the number of paths can be very

large, because of the huge amount of possible behaviors of

the system. For finding appropriate test cases, i.e., paths

that refer to a certain requirement to check, the search of

the paths has to be guided.
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Integrated test development

Software testing can be implemented at any time in the

development process; however, the main part of the testing

activities occurs after the requirements have been defined

and the coding process has been completed. Often, due to

delays in the development cycle, the testing cannot start at

the proper schedule and due to the frequent change in

requirements and poor documentation, a testing team will

often not be able to reach its estimated goals.

To avoid such problems, testing activities (e.g., test

planning, test specification, test implementation, test

execution, and test evaluation) have to be well planned

and seamlessly aligned with the system development activ-

ities. Existing process model like the V-Model[11] and the

Rational Unified Process[12] do cover already main test

activities. An enhancement of the traditional V-Model,

the so-called W-Model,[13] explicitly models the relation-

ship between development activities and testing activities.

The W-Model is a process model for software develop-

ment processes. It is based on the far-spread V-Model.

Besides the main development activities (requirement defi-

nition, functional and technical system model, and compo-

nent specification), the W-Model especially focuses test

activities. The test activities start early in the development

process and are directly tied to the development activities.

Developers with specialized knowledge in the field of

quality assurance and particularly testing are directly

involved in the individual development activities. Thus,

they are able to influence the system specification with

respect to testability and maintainability and can align the

test activities with their related system development activ-

ities. Fig. 1 shows an interpretation of the W-Model for

system development process.

Besides the heavyweight integration of testing activities

by means of large-scale process models (see above), in

recent years, certain lightweight integration strategies

have been developed. Especially in the field of agile devel-

opment,[14] test-driven approaches[14,15] have become

more and more important.

The seamless integration of development activities and

testing activities is one of the big challenges of model-

based development. On the one hand, the use of formal or

semiformal models for system development and testing

allows a more fine-grained integration of the development

artifacts. The use of standardized modeling tools

(e.g., UML Tools) in combination with integrated model

repositories supports traceability, integrated versioning,

and fine-grained maintenance of development artifacts in

such a way that was not possible some years ago. On the

other hand, the complexities of such repositories, espe-

cially in distributed development scenarios, actually blow

up the capabilities of most of the industrial-grade develop-

ment tools. Managing the complexity of distributed model-

based development processes, model interchange, and

maintenance of models over the complete software life

cycle is one of the big research areas currently addressed

by companies like IBM, Microsoft, etc.

Test strategies

Testing software is a complex process. Hence, interna-

tional standards and best practice recommendation agreed

on a set of terms, activities, and strategies that allow the

definition of systematic test approaches. Basically, most

specialists seem to agree with Weyuker[11] that at least

three stages of correctness testing are absolutely necessary

for reliable software-based systems:

Fig. 1 W-Model for system development process.
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� Unit/component testing, in which individual compo-

nents or software modules are tested.

� Integration testing, in which the subsystems formed

by integrating the individually tested components are

tested as an entity.

� System testing, in which the functionalities of the SUT

would be verified in a “real-world” scenario. This

might include not only functionality tests but also

non-functional tests, like load tests as well as perfor-

mance tests, if such requirements are set on the system.

Moreover, functional and non-functional testing are distin-

guished. Whereas functional testing directly relates to the

functional specification of a software system, non-

functional testing addresses the non-functional properties

of the SUT. Special methods exist for both functional and

non-functional approaches. Functional approaches con-

sider the coverage of the functional specification

(specification-based testing) or the coverage of the input

data domain of a system. Functional tests are usually sys-

tematically derived by methods like equivalence partition-

ing, boundary value analysis, all-pairs testing, etc.

To test non-functional aspects of software, the follow-

ing methods are used:

� Performance testing checks whether the SUT can han-

dle large quantities of data or users. This is generally

referred to as scalability.

� Stability or load testing checks whether the software is

working well in a defined period of time. This activity

is as well referred to as load testing.

� Usability testing checks whether the user interface

conforms to usability standards (i.e., is easy to use

and understandable).

� Security testing is essential for software that processes

confidential data to prevent system intrusion and

checks data integrity, confidentiality, authorization,

availability, and non-repudiation.

Concerning the availability of information on the SUT,

black-box testing and white-box testing are distinguished.

Both form actually the most important techniques to ensure

software quality. Moreover, grey-box testing is a mix of

both and especially supports the test designer with addi-

tional information on the SUT during the test specification

process.

� Black-box testing is a test case design technique in

which test cases are derived and selected based on an

analysis of the specification of the functionality of a

component or system without reference to its internal

structure. It evaluates the outputs of a SUT in response

to stimuli sent by a test system. Black-box testing

cannot guarantee that all parts of the implementation

have been tested. Instead, it discovers faults of

omission, indicating that part of the specification has

not been fulfilled. The target of black-box testing is to

cover the functionality of the test object as thoroughly

as possible. Black-box testing refers to methods like

equivalence partitioning, boundary value analysis, all-

pairs testing, random testing, and specification-based

testing.

� White-box testing is a testing technique performed on

the internal structure of the component or system. Its

basis is to cover the structure of the test object as

thoroughly as possible. White-box testing does not

guarantee that the complete specification has been

implemented and is much more expensive than black-

box testing. It requires the source code to be produced

before the tests can be planned and is much more

laborious in the determination of suitable input data

and the determination if the software is or is not

correct. The following methods for white-box testing

exist: API (application programmers’ interface) testing,

code coverage testing, fault injection methods, mutation

testing, etc.

� Grey-box testing involves having access to internal

data structures and algorithms for the purpose of

designing test cases. The test execution itself is carried

out with pure black-box approaches. In order to fully

test a software product, both black- and white-box

testings are required.

Integration strategies. Integration testing is the phase of

testing where individual software components/modules are

combined and tested in an assembly. This phase of integra-

tion testing takes components/modules as input that

already have been tested, aggregates them, applies tests

especially designed for integration issues, and delivers as

its output the integrated system ready for system testing.

Similar to unit or module testing, during the integration,

the missing components have to be replaced by dummies

(for missing message/service consumers) and test drivers

(for missing message/service providers).

For integration testing, different integration strategies

are possible. In general, two different approaches are

distinguished:

� Vertical integration addresses the composition of enti-

ties that obey a hierarchically ordered structure (e.g.,

inheritance structure, decomposition of large systems

in subsystem, and well-defined communication rela-

tionships with a clear consumer–provider relationship).

� Horizontal integration addresses the integrated compo-

nents as loosely, non-hierarchically coupled entities

like objects in an object-oriented environment. The

interdependencies between these components are

often not specified directly and are in most cases only

visible during runtime (e.g., objects that are coupled by

method calls).
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For the vertical integration we can rely on a defined hier-

archy structure that forms the fundamental basis for the

integration. We distinguish different strategies:

� the top-down integration,

� the bottom-up integration, and

� the outside-in integration.

The difference between top-down and bottom-up integra-

tion is clear. Whereas the top-down approach starts with

main service providers and integrates in direction to the

service consumers, the bottom-up approach works the

other way round. One starts with the service consumers

and proceeds with the service providers. The advantages of

the bottom-up approach are the early integration with hard-

ware and low-level driver and the direct accessibility of the

interfaces to be tested[16] whereas the advantages of the

top-down approach are the early test of top-level services

and control structures and the ability to simulate error

situations by means of dummies that simulate erroneous

component behavior.

The outside-in integration is a combination of the top-

down and the bottom-up approach and intends to subsume

the best of both.[16]

The integration order for a vertical integration is deter-

mined by the sequence of messages or procedure calls that

form the interdependencies between the components. That

is, the integration starts with an arbitrary component and

integrates the components that are involved in the commu-

nication step by step.[16]

Protocol testing. The term “protocol testing” addresses

the validation of communication protocols and their

respective realization in hardware and software.

Communication protocols are more or less formal descrip-

tions of the interactions that occur between a defined set of

components in general and between a set of software

components in particular. One of the main issues of proto-

col testing is conformance testing. Conformance testing is

required to confirm if the concrete realization of a protocol

conforms to a given standard. Standardized procedures for

protocol testing and protocol testing processed have been

developed by ISO and European Telecommunication

Standards Institute (ETSI).

With the emergence of large, software-based telecom-

munication systems in the 1980s, the detailed and efficient

test of communication protocols became more and more

fundamental. Furthermore, the application of Formal

Description Techniques (FDTs) for the specification of

protocols in the early 1990s has led to a noticeable para-

digm shift in the field of protocol testing as well.

Nevertheless, most of the relevant research activities lie

in the past. Actually, protocol testing is not a subject of

comprehensive research anymore. A good summary of the

state of the art of protocol testing is given in Refs. [17, 18].

In Ref. [18] different FDTs and the related test generation

methods are explained. The author focuses on different

generation methods. He distinguishes methods that address

test generation from Mealy machine models (MMMs) (the

T-Method,[19] the U-Method,[20] the D-Method,[21] and the

W-Method[22]) and from unique input/output sequences

(UIO sequences) (the UIOSs).[23–25] Moreover, the entry

summarizes methods for test coverage and the application

of failure models.

In Ref. [17], different kinds of protocol tests are

distinguished:

� The tests during the development phase of a protocol or

of a component that realizes a certain protocol aim to

find errors in the implementation. They are carried out

by developers and are similar to normal software (unit)

tests.

� Conformance tests check whether an implementation

conforms to a given protocol specification. In the case

of standards, the specification is the standard itself.

� Interoperability tests address the interoperability

between component different implementation of the

same protocol. Often, the conformance to a specifica-

tion is not sufficient to guarantee the interoperability of

interacting components that emanate different distribu-

tors and implementers. Interoperability testing fills

this gap.

Besides the given kinds of protocol test, the issues of per-

formance and robustness have to be addressed by additional

tests. Moreover, the generation of test cases is addressed.

The author distinguishes between test generations on the

basis of finite-state machines (FSM) (the W-method[22]

and the UIO-method[23–25]) and Labeled Transition

Systems (LTS) (Ioco Theory[26]).

Product and test quality

Measuring quality of a product is a difficult task. Quality is

rather defined as the bundle of attributes present in a

commodity and, where appropriate, the level of the attri-

bute for which the consumer (software users) holds a

positive value. Defining the attributes of software quality

and determining the metrics to assess the relative value of

each attribute are not formalized processes. Compounding

the problem is that numerous metrics exist to test each

quality attribute. Because users place different values on

each attribute depending on the product’s use, it is impor-

tant that quality attributes be observable to consumers. In

the following, we provide information regarding the pro-

duct quality of a software product in the “Product quality”

section. The “Test quality” section introduces measures for

test quality, and the “Standards on testing quality” section

lists explicit standards on testing quality.

Model-Based Testing 5

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112



Product quality. In 1991, the International Organization

for Standardization (ISO) adopted ISO 9126 as the stan-

dard for software quality (ISO, 1991). It is structured

around six main attributes listed below (subcharacteristics

are listed in parenthesis):

� Functionality (suitability, accurateness, interoperabil-

ity, compliance, security)

� Reliability (maturity, fault tolerance, recoverability)

� Usability (understandability, learnability, operability)

� Efficiency (time behavior, resource behavior)

� Maintainability (analyzability, changeability, stability,

testability)

� Portability (adaptability, installability, conformance,

replaceability)

Although a general set of standards has been agreed upon,

the appropriate metrics to test how well software meets

those standards are still poorly defined. Publications by

IEEE (1988, 1996) have presented numerous potential

metrics that can be used to test each attribute. These

metrics include

� fault density,

� requirements compliance,

� test coverage, and

� mean time to failure.

The problem is that no metric is able to unambiguously

measure a particular quality attribute. Different metrics

may give different rank orderings of the same attribute,

making comparisons across products difficult and

uncertain.

The lack of quality metrics leads most companies to

simply count the number of defects that emerge when

testing occurs. Few organizations engage in other

advanced testing techniques, such as forecasting field

reliability based on test data and calculating defect density

to benchmark the quality of their product against others.

Regardless of the metric’s quality, certain software attri-

butes are more amenable to being measured than other

attributes.

Pressman[27] describes the attributes that can be mea-

sured reliably and consistently across various types of soft-

ware programs:

� effort, time, and capital spent in each stage of the

project;

� number of functionalities implemented;

� number and type of errors remediate;

� number and type of errors not remediate;

� meeting scheduled deliverables; and

� specific benchmarks.

Interoperability, reliability, and maintainability are diffi-

cult to measure, but they are important when assessing the

overall quality of the software product.

Determining which metric to choose from the family of

available metrics is a difficult process. No unique measure

exists that a developer can use or a user can apply to

perfectly capture the concept of quality. Determining

which metric to use is further complicated because differ-

ent users have different preferences for software attributes.

Meeting quality requirements at each stage is supposed

to ensure quality of the end product. To achieve quality, the

system attributes must be clearly defined. The schedule for

the project has to be taken into consideration as well. The

usability feature from the quality triangle depicted in Fig. 2

suggests that users must be considered to ensure quality. It

is not unusual for some authors to relate software quality to

reliability and make reliability a component of confor-

mance to features.

Test quality. Besides the quality of the software product

itself the quality of the test specifications and implementa-

tions become more and more important in recent years.

Test quality addresses different quality aspects of test

specification and test implementations. Among others the

following questions arise:

� How effective are the given test cases, test suites, etc.

in terms of fault-revealing capabilities, specification

coverage or code coverage, etc.?

� How modular and reusable are the test suites?

� How mature are the test suites by means of reliability,

understandability, etc.?

Control

Schedule

Resources

Features

Quality

ReliabilityUsability  

Fig. 2 The software quality triangle.
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Approaches concerning the quality of test specifications

and test implementations are constantly subject of discus-

sions and various test quality methods and test quality

metrics have been developed. Most of them are dedicated

to individual quality aspects like code coverage to measure

the effectiveness of test cases,[28–30] mutation analysis to

provide insights to code stability and effectiveness of the

test cases, and test ordering to show the interconnection of

tests.

A more general view on the different quality aspects of

test specifications is given in Ref. [31]. Fig. 3 shows a

quality model for test specifications.

The model distinguishes between different quality char-

acteristics and is derived from the ISO/IEC 9126 quality

model. In the following we describe the different

characteristics:

� Test effectivity: the test effectivity characteristic

describes the capability of the specified tests to fulfill

a given test purpose.

— In the context of test specification, the suitability

aspect is characterized by test coverage. Coverage

constitutes a measure for test completeness and

can be measured on different levels, e.g., the

degree to which the test specification covers sys-

tem requirements, system specification, or test

purpose descriptions.

— The test correctness characteristic denotes the

correctness of the test specification with respect

to the system specification or the test purposes.

Furthermore, a test specification is only correct

when it always returns correct test verdicts and

when it has reachable end states.

— The fault-revealing capability has been added to

the list of subcharacteristics. Obtaining a good

coverage with a test suite does not make any

statement about the capability of a test specifica-

tion to actually reveal faults. Usage of cause–

effect analysis[32] for test creation or usage of

mutation testing may be indicators for increased

attention to the fault-revealing capability.

� Reliability: the reliability characteristic describes the

capability of a test specification to maintain a specific

level of performance under different conditions. In this

context, the word “performance” expresses the degree

to which needs are satisfied. The reliability subcharac-

teristics maturity, fault tolerance, and recoverability of

ISO/IEC 9126 apply to test specifications as well.

— Test results should always be reproducible in sub-

sequent test runs if generally possible. Otherwise,

debugging the SUT to locate a defect becomes

hard to impossible. Test repeatability includes

the demand for deterministic test specifications.

Fig. 3 The test specification quality model.
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— The security subcharacteristic covers issues such as

included plain-text passwords that play a role when

test specifications are made publicly available or

are exchanged between development teams.

� Usability: the usability attributes characterize the ease

to actually instantiate or execute a test specification.

— Understandability is important since the test user

must be able to understand whether a test specifi-

cation is suitable for his needs. Documentation

and description of the overall purpose of the test

specification are key factors—also to find suitable

test selections.

— The learnability of a test specification pursues a

similar target. To properly use a test suite, the user

must understand how it is configured, what kinds of

parameters are involved, and how they affect test

behavior. Proper documentation or style guides

have positive influence on this quality as well.

— A test specification has a poor operability if it,

e.g., lacks appropriate default values, or a lot of

external, i.e., non-automatable, actions are

required in the actual test execution. Such factors

make it hard to set up a test suite for execution or

they make execution time-consuming due to a

limited automation degree.

— A new test-specific subcharacteristic in usability

is test evaluability. The test specification must

make sure that the provided test results are

detailed enough for a thorough analysis. An

important factor is the degree of detail of richness

in test log messages.

� Efficiency: the efficiency characteristic relates to the

capability of a test specification to provide acceptable

performance in terms of speed and resource usage.

� Maintainability: maintainability of test specifications

is important when test developers are faced with chan-

ging or expanding a test specification. It characterizes

the capability of a test specification to be modified for

error correction, improvement, or adaption to changes

in the environment or requirements.

— The analyzability aspect is concerned with the

degree to which a test specification can be diag-

nosed for deficiencies. Test specifications should

be well structured to allow code reviews. Test

architecture, style guides, documentation, and

generally well-structured code are elements that

have influence in the quality of this property.

— The changeability subcharacteristic describes the

capability of the test specification to enable neces-

sary modifications to be implemented, e.g., badly

structured code or a test architecture that is not

expandable may have negative impact on this

quality aspect. Depending on the test specification

language used, unexpected side effects due to a

modification have negative impact on the stability

aspect.

� Portability: portability in the context of test specifica-

tion does only play a very limited role since test speci-

fications are not yet instantiated. Therefore,

installability (ease of installation in a specified envir-

onment), coexistence (with other test products in a

common environment), and replaceability (capability

of the product to be replaced by another one for the

same purpose) are too concrete. However, adaptability

is relevant since test specifications should be capable to

be adapted to different SUTs or environments. For

example, hardcoded SUT addresses (e.g., IP addresses

or port numbers) or access data (e.g., user names) in the

specification make it hard to adapt the specification for

other SUTs.

� Reusability: although reusability is not part of ISO/

IEC 9126, we consider this aspect to be particularly

important for test specifications since it matters when

test suites for different test types are specified. For

example, the test behavior of a performance or stress

test specification may differ from a functional test, but

the test data, such as predefined messages, can be

reused between those test suites.

Actually, coverage analysis on code and specification

(requirements coverage) and static analysis of the test

case code are the main measures to ensure test case quality.

In static code analysis, the so-called test smells are used

to assess the code quality of test suites. The term “test

smell” is derived from the term “code smell” and in general

specifies flaws in the design or code of a test. Test smells

describe test artifacts that are too long, complex, include

unnecessary redundant code, exposing or breaking encap-

sulation of the application code, run slow, or make inap-

propriate assumptions on external resources.

Mutation analysis[33,34] allows measuring the effective-

ness of test suites and helps optimizing automatically

derived test suites. Commercial tools are rarely available.

Standards on testing quality. This section provides lists of

relevant standards on software testing, software quality, etc.

Software testing:

� ISTQB “Standard Glossary of Terms Used in Software

Testing” 2007 presents concepts, terms, and definitions

designed to aid communication in (software) testing

and related disciplines.[35]

� IEEE 829–2008 “IEEE Standard for Software Test

Documentation” specifies the form and content of

individual test documents.[36]

� BS 7925–2:1998 “Software Testing. Software

Component Testing, Part 2” defines the process for
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software component testing using specified test case

design and measurement techniques.[37]

� IEEE 1028–2008 “IEEE Standard for Software

Reviews and Audits” defines five types of software

reviews and audits, together with procedures required

for the execution of each review and audit type.[38]

� ISO 9646-1:1994 “Information Technology—Open

Systems Interconnection—Conformance Testing

Methodology and Framework—Part 1: General

Concepts” specifies a general methodology for testing

the conformance of products to OSI specifications,

which the products claimed to implement.[39]

� ETSI ES 201 873 series defines the Testing and Test

Control Notation version 3 (TTCN-3).[40]

Software quality and software quality management:

� IEEE 1061–1998 “Software-Quality Metrics

Methodology” defines that for high-quality software

the software’s attributes must be clearly defined.[41]

� ISO 9001:2008 “Quality Management Systems—

Requirements” specifies requirements for quality man-

agement systems for organizations.[42]

� ISO/IEC NP 90003 “Software Engineering. Guidelines

for the Application of ISO 9001:2000 to Computer

Software” provides guidelines for organizations in the

application of ISO 9001:2000 to computer software.[43]

� ISO/IEC 9126-1:2001 “Software Engineering—

Product Quality—Part 1: Quality Model” defines a

product quality model.[44]

� IEEE 730–2002 “IEEE Standard for Software Quality

Assurance Plans” provides uniform, minimum accep-

table requirements for preparation and content of

Software Quality Assurance Plans (SQAPs). This stan-

dard applies to the development and maintenance of

critical software.[45]

Software evaluation:

� ISO/IEC 14598-1:1999 “Information Technology—

Software Product Evaluation—Part 1: General Over-

view” gives an overview on how to evaluate software

products.[46]

� ISO/IEC 25051:2006 “Software Engineering—

Software Product Quality Requirements and

Evaluation (SQuaRE)—Requirements for Quality of

Commercial Off-The-Shelf (COTS) Software Product

and Instructions for Testing” defines quality require-

ments for COTS software products.[47]

� ISO/IEC 14102:2008 “Information Technology—

Guideline for the Evaluation and Selection of CASE

Tools” defines both a set of processes and a structured

set of CASE tool characteristics for use in the technical

evaluation and the ultimate selection of a CASE tool.[48]

� IEEE 982.1–2005 “IEEE Standard Dictionary of

Measures of the Software Aspects of Dependability”

is a standard dictionary of measures of the software

aspects of dependability for assessing and predicting

the reliability, maintainability, and availability of any

software system.[49]

Critical software evaluation:

� IEEE 16085-2006 “Systems and Software Engineering—

Life Cycle Processes—Risk Management” deals with

risk management during the software life cycle

process.[50]

� The Canadian Standards Association approved CSA-

396.1.1, a “Quality Assurance Program for Previously

Developed Software Used in Critical Applications.”[51]

� RTCDO Std 178b “Software Considerations in Air-

borne Systems and Equipment Certification” deals

with the development of software for aviation.[52]

� EN 50128:2001 “Railway Applications—Communi-

cation, Signaling and Processing Systems—Software

for Railway Control and Protection Systems” specifies

procedures and technical requirements for the develop-

ment of programmable electronic systems for use in

railway control and protection applications.[53]

Areas for Test Process Automation

Today, the industrial process for test case development

follows an approach of stepwise collection and completion

of test-related information. A practical process that has

been established especially in the context of the develop-

ment of standardized test suites may use the following

sequence of documents:

� SUT specification

� Requirement catalog

� Test model

� Test purpose definition

� Test case description

� Test report

The document structure, notation, and degree of formalism

are varying in the different application domains and

depend on the test derivation methods.

An outcome of the test campaign execution are test

reports related to the test cases that include generated test

trace logs and test result verdicts. They can be used for the

purpose of system failure reparation and/or coverage

detection.

Both the creation of the documents listed above and the

execution and evaluation of the test runs may be according

to manual procedures but are also subject for semiauto-

matic or tool-supported activities. Researchers and tool

developers are aiming to increase the degree of automation

of the test steps.
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The following section provides further details on the

nature and characteristics of the major test process phases.

Test purposes and test model creation

The initial test information that provides the target and

scope of the tests to be developed is traditionally a struc-

tured list of test purposes. It can be retrieved from either the

system specification or requirement list. Alternatively, a

test model containing test-relevant definitions about con-

figuration, data, and behavior needed may be involved. In

the latter case, test purposes may not be retrieved directly

from the SUT information but the test model description.

Test case, data, and script generation

Test case descriptions need to contain test configuration,

data, and behavior (sequence) definitions. This step is

archived due to the refinement of completion of test pur-

poses information. The outcome must be deterministic for

an unambiguous interpretation and execution of the final

test cases. The notation used for test description needs a

clear operational semantic.

Test configurations are usually being defined as one of

the first steps within the test development process. They

have to reflect the possible access points (ports) of the SUT

and the data types used at the involved interfaces. Test

sequences will be derived by using the identified test

activities reflecting the test purposes or test model beha-

vior events. They need to be completed by appropriate pre-

and postamble steps. The challenge of test data selection

and combination is mostly a critical step in the automated

test definition process since the explosion of test case

number may be due to unlimited test data sets.

Automated tools help to find appropriate data combination

in order to cover data space.

Test case selection

Due to a high number of test cases or a long execution time

of parts of the test suite, a selection or ordering according to

empirical or calculated priorities of the available test cases

is required. Selection criteria are due to, e.g., coverage or

economical aspects and both can benefit from automated

tool support.

Test execution

An automated procedure for test case execution helps to

avoid manual failure and to ensure exact repeatability of

the tests. Additionally, automated test execution is essen-

tial if time-critical event sequences (e.g., short reactions) or

high parallelisms (e.g., loads) are addressed.

Test management and test result analysis

Test verdict management and analysis of identified mis-

behavior of the SUT is very time-consuming and require

very good logging features of the test execution tool, e.g.,

data view facilities to compare observations with expecta-

tion and graphical traces are of great advantages. This

includes tool support for the backward association of

observation with the test description and/or system

definition.

The test report generation is the last step of the test

process and may be subject for test automation in order to

give a fast and clear overview on extensive test campaigns.

Using Models for Testing

MBT refers to software testing where test cases are derived

in whole or in part from a model that describes selected,

often structural, functional, sometimes non-functional

aspects of a SUT. According to Ref. [54], in recent years,

people are using this term for a wide variety of test gen-

eration techniques, while the following four main

approaches are known as MBT:

� Generation of test input data from domain model

� Generation of test cases from environmental model

� Generation of test cases with oracles from a behavior

model

� Generation of test scripts from abstract tests

With this view of MBT, it may be defined as “the automa-

tion of the design of black-box tests.” It is different from

the usual black-box testing that instead of writing tests

based on requirements documentation, the model of SUT

should be created and used for automatic generation of

tests.

Goals for using models for testing

The basic idea of deriving test models from system models

is to reuse the information about the system to be devel-

oped also for developing the test model as the counterpart

to the system. In particular, the following system informa-

tion can be used for the derivation of test models for black-

box testing:

� The structure and configuration of the system to be

developed in terms of components, interfaces, con-

nected instances, etc.

� The system behavior externally observable at compo-

nent ports.

� The type system (in particular user-defined types, e.g.,

structured types).

� Some concrete data values, e.g., used for selecting

between branches in the control flow.

10 Model-Based Testing

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112



Limitations

System and test models differ in their degree of abstraction

and completeness. It is obvious that the stage of informa-

tion provided by the models is essential for scope and

benefits from the model usage. This is important and

even more important if the work is dedicated beyond

academic case studies but to real industrial application.

In many domains, the system descriptions are forma-

lized only partly or apply an in-house technology platform

that is not useful or open for data exchange or interaction

with other tools. The technology, notations, and tools for

modeling need to be adequate for the system definition and

test development process.

Furthermore, the quality of the model has to be taken

into account for further usage, in various dimensions, e.g.,

readability for humans and extent of tool support. This

includes the application of guideline and modeling styles.

Role of models

Due to the experiences and limitations with MBT in prac-

tice today the models may get different roles that depend

on the degree of completeness and target usage. Some

sample roles are given in the following list:

� Overview and clarity on system structure and design

for handling of complexity and general test planning

� Analysis and understanding of the test target and

purposes

� Planning of the test system infrastructure due to the

system architecture and configurations

� Planning of the test efforts and estimation of test cam-

paign durations

� Automation of parts of the test development process

� Generation of generic test templates and combinations

to be extended and improved

� Abstract test definitions including data and behavior

sequences

� Executable test suites to be completed with parameters

only

Due to this list it is obvious that models have value in all

test development and test campaign execution phases even

if the information is focused on system parts only. In the

following, we review selected formalisms that are cur-

rently used for MBT approaches.

UML. Nowadays, UML is often used for the specifica-

tion of test suites. Ref. [55] relates TTCN-3[56,57] and the

UML 2.0 testing profile. Ref. [58] proposes a Use

Interaction Test (UIT) method that allows test generation

from UML diagrams (use case and sequence diagrams).

The authors claim that the method reuses UML diagrams

developed for analysis and design without requiring any

additional formalism or ad hoc effort to specify test

purposes. However, “choices” that represent a list of spe-

cific situations or ranges of input data should be deter-

mined for test generation by the UIT method. These

choices together with “constraints among choices” can

also be considered as implicit test purposes.

MSC. In Refs. [59, 60], Message Sequence Charts

(MSCs) are used to specify test purposes. Test purposes

can be developed by a test designer or derived fully auto-

matically from an SDL specification. A test developer can

also choose to test certain aspects of the system, i.e., certain

transitions, processes, or blocks of the specification can be

marked as covered so that they are ignored during the test

purpose computation. Simple basic MSCs are easy to

understand and process automatically. However, under-

standing MSCs[61] containing new advanced control struc-

tures and treatment of data is non-trivial.[62]

Temporal logic. In Ref. [63], a test purpose is expressed

as a property in temporal logic. The general idea is to allow

automatic test generation from a partial specification. The

proposed test generation technique involves a (partial)

specification S and a safety or bounded liveness property

P. Specification S should be “close enough” to the actual

behavior of the Implementation Under Test (IUT). No

particular conformance relation between S and the IUT is

required at this level. Property P is given through an obser-

ver O that can recognize sequences of P. This observer is a

parameterized automaton on infinite words. Test cases are

automatically generated by traversing the specification in

order to find “interesting” execution sequences that are

able to show non-satisfiability of P by the IUT.

Test case generation approaches

In this section, various test case generation approaches

applied for MBT are presented.

Deductive theorem proving. Theorem proving has been

originally used for automated proving of logical formulas.

For MBT approaches the system is modeled by a set of

logical expressions specifying the system’s behavior. For

selecting test cases, the model is partitioned into equivalence

classes over the valid interpretation of the set of logical

expressions describing the SUT. Each class represents

certain system behavior and can therefore serve as a test

case. The simplest partitioning is done by the disjunctive

normal form approach. The logical expressions describing

the system’s behavior are transformed into the disjunctive

normal form. The classification tree method provides a more

sophisticated hierarchical partitioning. Also, partitioning

heuristics are used supporting the partitioning algorithms,

e.g., heuristics based on boundary value analysis.

Constraint logic programming. Constraint program-

ming can be used to select test cases satisfying specific
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constraints by solving a set of constraints over a set of

variables. The system is described by means of constraints.

Solving the set of constraints can be done by Boolean

solvers or by numerical analysis, like the Gaussian elim-

ination. A solution found by solving the set of constraints

formulas can serve as test cases for the corresponding

system.

Model checking. Originally, model checking was devel-

oped as a technique to check if a property of a specification

is valid in a model. Herein, a model of the SUT is provided

to the model checker. Within the procedure of proofing if

this property is valid in the model, the model checker

detects witnesses and counterexamples. A witness is a

path where the property is satisfied; a counterexample is

a path in the execution of the model where the property is

violated. These paths can be used as test cases.

Symbolic execution. Symbolic execution is often used in

frameworks for MBT. It can be a means in searching for

execution traces in an abstract model. In principle, the

program execution is simulated using symbols for vari-

ables rather than actual values. Then the program can be

executed in a symbolic way. Each execution path repre-

sents one possible program execution and can be used as a

test case. For that the symbols have to be instantiated by

assigning values to the symbols.

MODEL-BASED TESTING APPROACHES

A principal positioning of MBT in the test methods taxon-

omy is shown in Fig. 4. MBT can be used both for static

and dynamic tests. It can be applied both for manual and

tool-supported, automated testing. For manual testing,

MBT provides guidance in performing the tests only,

whereas for automated testing, higher efficiency, coverage,

etc. can be obtained, so that a substantial gain can be

achieved when combining MBT and test automation.

In static testing, essentially the information from the

system model is examined, such as the system architecture,

system interfaces, system components and their relations,

etc. The system model (or parts of it) is interpreted as a set

of rules to which the system must correspond; see, for

example, Ref. [64].

More often, however, MBT is used for dynamic test-

ing.[65] Dynamic tests can use active (i.e., intrusive) or

passive (i.e., non-intrusive) tests. Active tests provide sti-

muli to the SUT and observe and analyze the reactions.

Passive tests analyze traces of the system execution and

compare them against the system model. For active testing,

test cases from the data, and structural and behavioral

information of the system models are derived, completed

(if needed), and applied to the SUT. For passive testing,

system invariants and/or conditions, which are given in the

system model, are analyzed along the traces (by a forward

or backward search).

Fig. 5 represents the relations between system and test

system and between their models: the requirements repre-

sent—from different perspectives—both the intended sys-

tem and test system and their models, of which typically

several on different abstraction levels exist. On the other

hand, system and test system (and their models) realize the

requirements. System and test system are dual to each other:

while the test system is developed to validate the require-

ments in the system, the system serves also for the validation

of the test system. The same is true on model level—and

provides an additional validation possibility: the test model

can be used for an early validation of the system model;

there are different variants of MBT processes that make

different use of system and/or test models (see entry

Model-Based Testing-Approaches and Notations, p. xxx).

SUMMARY

MBT constitutes a number of technologies, procedures,

and approaches, with the aim to improve the quality and

 

Test method

static dynamic

automated manual

active passive

manual automated

model-basedrule-based

code-based model-based model-basedrule-based  
Fig. 4 Test methods taxonomy and

model-based testing.
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effectiveness of test specification and test execution.

Started as a pure academic field of application it has gained

significance for industrial domains in recent years. With

the, even if slow, adoption of Model-Based Engineering

techniques for industrial software engineering processes,

the basis to apply MBT approaches is nowadays much

better than a few years ago. The availability of yet mature

tools has also led to a higher interest on MBT. For a

discussion of various approaches to MBT, languages and

notations, and applications, please see Model-Based

Testing B and Model-Based Testing C.

ABBREVIATIONS

ASM Annotated SUT Model

ATS Abstract Test Suite

DTM Dedicated Test Model

EMF Eclipse Modeling Framework

ETS Executable Test Suite

ETSI European Telecommunication Standards

Institute

GUI Graphical User Interface

IDE Integrated Development Environment

IDL Interface Definition Language

IUT Implementation Under Test

MDA Model -Driven Architecture

MM Meta-Model

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform-Independent Model

PIT Platform-Specific Test Model

PSM Platform-Specific Model

PST Platform-Specific Test Model

SUT System Under Test

TTCN-3 Testing and Test Control Notation

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language
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